5 años del telescopio Solar Dynamics Observatory

El pasado 11 de febrero se cumplieron 5 años del lanzamiento del telescopio espacial Solar Dynamics Observatory, un instrumento diseñado para el estudio del Sol. El vídeo de más abajo rinde homenaje a sus casi 2000 días en el espacio, sus 2600 Tb de datos mandados hacia nosotros y sus 200 millones de imágenes. Un vídeo espectacular. Más información en su página.

Advertisements

ESA Euronews: Los misterios de la materia oscura

Copio y pego el texto que han puesto en Youtube, los enlaces son míos.

Todo lo que nos rodea, desde el planeta Tierra hasta las galaxias distantes, representa sólo el cinco por ciento del universo. El resto es o bien energía oscura o bien materia oscura.
Algunos físicos y expertos del CERN nos ayudan a entender un poco más sobre la materia oscura.
En Ginebra hace tres años, se confirmó la existencia del bosón de Higgs. Este año se esperan nuevos hallazgos con la puesta en marcha del Gran Colisionador de Hadrones que funcionará a pleno rendimiento por primera vez.
Pero, los avances no sólo vendrán del gran acelerador de partículas. La Agencia Espacial Europea está construyendo un nuevo telescopio espacial llamado Euclides con el que se podrá observar el universo a gran escala.
Con estos dispositivos tecnológicos los físicos y cosmólogos han encontrado que la materia normal constituye sólo el 5 por ciento de todo el universo. Y la proporción de energía oscura sigue aumentando…
La investigación sigue avanzando. Y los científicos están casi seguros de que probablemente la materia oscura, podría estar integrada por algún tipo de partícula misteriosa, y que tarde o temprano terminarán por identificarla.

Nueva vista de los Pilares de la Creación

En 1995 el Telescopio Espacial Hubble capturó una de las imágenes más icónicas que nos ha regalado el telescopio en órbita con su Cámara Planetaria y de Gran Angular 2. Se trata de los llamados Pilares de la Creación, una formación de tres enormes regiones gaseosas, en su interior se están formando nuevas estrellas. La formación es solo una pequeña parte de la Nebulosa de la Águila, también conocida como M16, situada  a unos 7000 años luz de nosotros.

En 2009 se instaló en el Hubble la Cámara de Gran Angular 3 la cual nos ha proporcionado una nueva vista de la región, más afinada y con más detalle que es la que podéis ver más abajo. Además nos ha proporcionado otra vista de la región en infrarrojo, es decir, un mapa del calor que desprende. Es la segunda imagen que os muestro. Toda la información en la web del Hubble. Clic para ampliar.

New view of the Pillars of Creation — visible
Crédito: NASA, ESA/Hubble and the Hubble Heritage Team
New view of the Pillars of Creation — infrared
Crédito: NASA, ESA/Hubble and the Hubble Heritage Team

Primer planeta descubierto alrededor de gemelo solar en un cúmulo estelar

Impresión artística de un exoplaneta orbitando una estrella en el cúmulo Messier 67. Crédito: ESO/L. Calçada

Los astrónomos han usado el buscador de planetas HARPS de ESO situado en Chile, en conjunto con otros telescopios alrededor del mundo, para descubrir tres planetas orbitando estrellas en el cúmulo Messier 67. A pesar de que actualmente se han detectado más de mil planetas fuera del Sistema Solar, sólo un puñado de ellos ha sido encontrado en cúmulos estelares. Notablemente, uno de estos nuevos exoplanetas está orbitando una estrella que es un gemelo solar muy poco común – una estrella que es casi idéntica al Sol en todos sus aspectos.

Ahora ya se sabe que los planetas que orbitan estrellas fuera del Sistema Solar son bastante comunes. Estos exoplanetas se han encontrado orbitando estrellas de una amplia gama de edades y composiciones químicas y están dispersos en los cielos.  Sin embargo, hasta ahora, muy pocos planetas han sido descubiertos dentro de cúmulos estelares[1]. Esto es particularmente extraño, ya que es sabido que las estrellas nacen en cúmulos. Los astrónomos se han preguntado acaso existe algo peculiar acerca de la formación de planetas en cúmulos estelares que pudiera explicar esta curiosa escasez.

Anna Brucalassi (Instituto Max Planck para Física Extraterrestre, Garching, Alemania), autora principal del nuevo estudio, junto a su equipo, deseaban investigar más a fondo. “En el cúmulo estelar Messier 67, todas las estrellas tienen aproximadamente la misma edad y composición que el Sol. Esto proporciona un perfecto laboratorio para estudiar cuántos planetas se forman en un ambiente tan aglomerado, y si acaso se forman principalmente alrededor de estrellas más masivas o menos masivas”.

El equipo utilizó el instrumento buscador de planetas HARPS, del Telescopio de 3.6 metros de ESO, en el Observatorio La Silla. Estos resultados fueron complementados con observaciones desde varios otros observatorios alrededor del mundo[2]. Se monitorearon cuidadosamente 88 estrellas seleccionadas en Messier 67[3] durante un periodo de seis años para observar los pequeñísimos movimientos indicadores de acercamiento y alejamiento desde la Tierra, que revelan la presencia de planetas orbitando.

Este cúmulo yace aproximadamente a 2500 años luz, en  la constelación de Cáncer (El Cangrejo) y contiene alrededor de 500 estrellas. Muchas de las estrellas del cúmulo son más tenues que aquellas normalmente seleccionadas para la búsqueda de exoplanetas y, al intentar detectar las señales débiles de posibles planetas el instrumento HARPS fue exigido al límite.

Se descubrieron tres planetas: dos orbitando estrellas similares al Sol, y uno orbitando una estrella gigante roja, más masiva y evolucionada. Respecto a los dos primeros planetas, ambos tienen aproximadamente un tercio de la masa de Júpiter y orbitan sus estrellas anfitrionas en siete y cinco días respectivamente. El tercer planeta tarda 122 días en orbitar su estrella anfitriona y es más masivo que Júpiter[4].

Se comprobó que el primero de estos planetas se encontraba orbitando una estrella notable – uno de los gemelos solares más idénticos detectados hasta la fecha y que es prácticamente idéntico al Sol (eso1337) [5]. Es el primer gemelo solar en un cúmulo que se haya descubierto conteniendo un planeta.

Dos de los tres planetas son “Júpiteres calientes” – planetas comparables a Júpiter en tamaño, pero mucho más cercanos a sus estrellas anfitrionas y, por lo tanto, mucho más calientes. Los tres planetas están más cercanos a sus estrellas anfitrionas que la zona habitable, donde podría existir agua en estado líquido.

“Estos nuevos resultados demuestran que los planetas en cúmulos estelares abiertos son casi tan comunes como los que se encuentran alrededor de estrellas aisladas – pero no es fácil detectarlos”, afirmó Luca Pasquini (ESO, Garching, Alemania), co-autor del nuevo artículo científico[6]. “Los nuevos resultados contrastan con trabajos anteriores que no lograron encontrar planetas en cúmulos, pero concuerdan con otras observaciones más recientes. Continuamos observando este cúmulo, para descubrir cómo las estrellas con y sin planetas difieren en masa y composición química”.

Notas

[1] Los cúmulos estelares se presentan en dos categorías principales. Los cúmulos abiertos son grupos de estrellas que se han formado juntas a partir de una nube de gas y polvo única, en el pasado reciente. Se les encuentra con mayor frecuencia en los brazos espirales de una galaxia como la Vía Láctea. Por otra parte, los cúmulos globulares son conglomerados esféricos, mucho mayores, de estrellas mucho más longevas, que orbitan alrededor del centro de una galaxia. A pesar de búsquedas cuidadosas, no se han encontrado planetas en cúmulos globulares y, menos de seis, en cúmulos abiertos. En estos últimos dos años, se han encontrado exoplanetas en los cúmulos  NGC 6811 y Messier 44 y, más recientemente aún, se ha detectado uno, también, en el brillante y cercano cúmulo Hyades.

[2] Esta investigación también hizo uso de observaciones realizadas con el instrumento SOPHIE del Observatorio de Haute-Provence, en Francia, como también con el Telescopio Suizo Leonhard Euler de 1.2 metros en el Observatorio La Silla de ESO en Chile y el Telescopio Hobby Eberly, ubicado en Texas, USA.

[3] La mayoría de los cúmulos abiertos se disipan, luego del transcurso de una decena de millones de años. Sin embargo, los cúmulos que se forman con una densidad de estrellas mayor, pueden mantenerse juntos por periodos más largos. Messier 67 es un ejemplo de tales cúmulos longevos y uno de los cúmulos más antiguos y mejor estudiados, cercanos a la Tierra.

[4] Las estimaciones de masa de planetas observados usando el método de velocidad radial son estimaciones de valor mínimo: si la órbita del planeta es altamente inclinada podría tener una masa mayor y crear los mismos efectos observados.

[5] Los gemelos solares, análogos solares y estrellas de tipo solar, son categorías de estrellas, clasificadas de acuerdo a su similitud con nuestro propio Sol. Los gemelos solares presentan un parecido mayor, ya que poseen masas, temperaturas y abundancias químicas muy similares al Sol. Los gemelos solares son muy escasos, pero las otras categorías de estrellas, donde la similitud es menos precisa, resultan mucho más corrientes.

[6] Esta tasa de detección de 3 planetas en una muestra de 88 estrellas en Messier 67, es cercana a la frecuencia promedio de planetas alrededor de estrellas que no pertenecen a cúmulos.

Enlaces

Nota de prensa publicada en el portal del Observatorio Europeo Austral (ESO).

La medida más precisa de las galaxias lejanas

El grupo internacional del Espectroscopio Detector de Oscilación de Bariones (BOSS) ha medido la distancia que existe hasta galaxias situadas a más de 6.000 millones de años luz con una precisión sin precedentes del 1%. El trabajo, en el que participan científicos de la Universidad de Barcelona, también establece límites para la misteriosa materia oscura.

lustración de la medida tomada por BOSS. Las esferas muestran el tamaño actual de las oscilaciones acústicas de bariones (BAO) de los inicios del universo, que han ayudado a establecer la distribución de las galaxias, con una ligera tendencia a alinearse a lo largo de los bordes de las esferas. Las BAO se pueden usar como una regla (línea blanca) para medir las distancias a todas las galaxias del universo. / Zosia Rostomian, Lawrence Berkeley National Laboratory

En la reunión anual de la Sociedad Astronómica Americana hoy se han anunciado los últimos datos del Baryons Oscillation Spectroscopic Survey (BOSS). El equipo que integra este espectroscopio ha informado que ha logrado tomar la medida, con una precisión sin precedentes del 1%, de la distancia a galaxias lejanas localizadas a más de 6.000 millones de años luz de la Tierra.

“No hay muchas cosas en nuestra vida cotidiana que conozcamos con una precisión del 1%”, dice David Schlegel, investigador principal del proyecto y físico del Laboratorio Nacional Lawrence Berkeley (LBNL). “Ahora conozco el tamaño del universo mejor que el de mi casa”.

Toda medida conlleva un grado de incertidumbre, que puede expresarse como un porcentaje de aquello que se mide –por ejemplo, si se mide una distancia de 200 km con un error de 2 km del valor real, la precisión sería del 1%–. En astronomía sólo unos pocos cientos de estrellas y algunos cúmulos están lo suficientemente cerca para que las distancias medidas tengan esa precisión.

Casi todas estas estrellas están a sólo unos pocos miles de años luz de distancia, dentro de nuestra propia galaxia, la Vía Láctea. Por tanto, llegar a medir distancias un millón de veces más lejanas con esta precisión es un reto en astronomía.

Para llevar a cabo estas medidas BOSS ha utilizado la medida de las denominadas oscilaciones acústicas de bariones (BAO), unas ondas periódicas del universo primitivo que permiten conocer la distribución de galaxias en el universo.

Estas ondas de sonido tienen una longitud conocida que se puede usar para medir distancias y deducir el ritmo de expansión del universo en el pasado. Como el tamaño original de estas ondas es conocido, se puede obtener su medida actual para cartografiar galaxias, lo que  ha permitido ubicar 1,2 millones de galaxias.

En esta investigación han participado los científicos Licia Verde y Antonio Cuesta del Instituto de Ciencias del Cosmos de la Universidad de Barcelona (ICCUB). En concreto han efectuado los cálculos necesarios para determinar cómo la  medida de la distancia promedio a estas galaxias afecta a nuestro conocimiento del contenido de materia y energía del universo.

“La precisión de la medida de distancia de BOSS, complementada con otras fuentes de información cosmológica, ofrecen la mejor determinación hasta la fecha de la historia de la expansión del universo, de su geometría y de su contenido de materia y energía”, destaca Verde.

Avances sobre la materia oscura

“Los resultados de estos cálculos restringen los posibles valores de los seis parámetros que describen nuestro universo, como son su expansión en el momento presente, su curvatura o el contenido de materia oscura”, apunta Cuesta.

De hecho, las medidas ponen nuevos límites a las propiedades de la misteriosa materia oscura que se piensa llena el espacio vacío, lo que provoca la expansión acelerada del universo.

Hasta ahora, las mediciones de BOSS parecen consistentes con una forma de energía oscura que se mantiene constante a través de la historia del Universo. Esta ‘constante cosmológica’ es uno de los seis números necesarios para hacer un modelo que una la forma y la estructura a gran escala del universo.

El proyecto BOSS, que lidera Schlegel desde el Lawrence Berkeley National Laboratory,  forma parte del tercer proyecto de Exploración Digital del Espacio Sloan (Sloan Digital Sky Survey, SDSS-III) y en él participan entre otros un grupo de astrofísicos españoles.

El SDSS se inició el año 2000 y desde el principio ha examinado más de una cuarta parte del cielo nocturno y ha producido el mapa tridimensional en color del universo más grande que se haya hecho nunca.

Artículo publicado en Servicio de Información y Noticias Científicas (SINC).

ALMA detecta supernova que actúa como fábrica de polvo cósmico

Imagen compuesta de la Supernova 1987A. Crédito: ALMA (ESO/NAOJ/NRAO)/A. Angelich. Visible light image: the NASA/ESA Hubble Space Telescope. X-Ray image: The NASA Chandra X-Ray Observatory

Nuevas e impactantes observaciones realizadas con el telescopio ALMA (Atacama Large Millimeter/submillimeter Array) captan, por primera vez, los restos de una supernova reciente en presencia de grandes cantidades de polvo cósmico formado hace poco tiempo atrás. Si una cantidad suficiente de este polvo lograra realizar la peligrosa transición hacia el espacio interestelar, podría explicar cómo muchas galaxias adquirieron su aspecto oscuro y polvoriento.

Las galaxias pueden contener enormes cantidades de polvo [1] y se cree que las supernovas son una de sus principales fuentes de producción, especialmente en el Universo primitivo. Pero la evidencia directa que demuestra la verdadera capacidad que tienen las supernovas de generar polvo ha sido muy escasa hasta el momento, y no da respuesta a los grandes volúmenes de polvo detectados en galaxias jóvenes y distantes. Sin embargo, observaciones realizadas con ALMA están cambiando este escenario.

Hemos encontrado una masa de polvo de enormes proporciones concentrada en la parte central del material eyectado de una supernova relativamente joven y cercana”, dijo Remy Indebetouw, astrónomo del Observatorio Radioastronómico Nacional de los Estados Unidos (NRAO) y de la Universidad de Virginia, ambos localizados en Charlottesville, Estados Unidos. “Esta es la primera vez que realmente hemos logrado obtener imágenes del lugar en donde se formó el polvo, lo que es de gran importancia para comprender la evolución de las galaxias”.

Un equipo internacional de astrónomos usó ALMA para observar los brillantes remanentes de la Supernova 1987A [2], ubicada en la Gran Nube de Magallanes, una galaxia enana que orbita la Vía Láctea a unos 160.000 años luz de la Tierra. La SN 1987A es la explosión más cercana alguna vez captada desde la observada por Johannes Kepler dentro de la Vía Láctea en 1604.

Los astrónomos predijeron que a medida que el gas se enfriara luego de la explosión, se formarían grandes cantidades de polvo una vez que los átomos de oxígeno, carbono y silicio se combinaran en las frías regiones centrales del remanente. No obstante, las primeras observaciones de la SN 1987A  con telescopios infrarrojos,  realizadas durante los primeros 500 días posteriores a la explosión, sólo detectaron una pequeña cantidad de polvo caliente.

Con la resolución y sensibilidad sin precedentes de ALMA, el equipo de investigación fue capaz de fotografiar el polvo frío, el que se encuentra en mayores proporciones y brilla intensamente en luz milimétrica y submilimétrica. Los astrónomos estiman que el remanente ahora contiene alrededor del 25 por ciento de la masa del Sol en polvo recién formado. Además, descubrieron que se habían generado importantes cantidades de monóxido de carbono y monóxido de silicio.

“La SN 1987A es un lugar especial, ya que no se ha mezclado con su entorno, es por esto que lo que observamos allí se generó allí”, comenta Indebetouw. “Los nuevos resultados producidos por ALMA, los primeros de su clase, revelan un bloque  conformado por el remanente de la supernova colmado de material que simplemente no existía hace unas décadas”.

Sin embargo, las supernovas no solo pueden crear sino también destruir las partículas de polvo.

Cuando la onda expansiva de la explosión inicial se propagó hacia el espacio, produjo anillos brillantes de material, como se pudo apreciar en observaciones anteriores realizadas con el Telescopio Espacial Hubble de NASA/ ESA. Después de colisionar con esta capa de gas, expulsada por la estrella progenitora, una gigante roja, al acercarse al final de su vida, una parte de esta poderosa explosión cambió de dirección, devolviéndose hacia el centro del remanente. “En algún momento, esta onda de choque que viene de regreso colisionará con estos abultados cúmulos de polvo recién formado”, indica Indebetouw. “Es probable que en ese punto alguna fracción del polvo sea desintegrado. Es difícil predecir exactamente cuánto, tal vez sólo un poco, posiblemente la mitad o dos tercios”. Si una buena parte subsiste y logra alcanzar el espacio interestelar, podría explicar la abundante cantidad de polvo que los astrónomos detectan en el Universo primitivo.

“Las primeras galaxias contienen enormes cantidades de polvo y este  posee un rol fundamental en la evolución de las mismas”,  dijo Mikako Matsuura de la Escuela Universitaria de Londres, Reino Unido. “Hoy sabemos que el polvo se puede generar de varias maneras, pero en los inicios del Universo la mayor parte debe haber provenido de las supernovas. Por fin tenemos una evidencia clara que avala esa teoría”.

Notas

[1] El polvo cósmico está compuesto por partículas de silicato y grafito — minerales muy abundantes también en la Tierra. El hollín producido por una vela es muy similar al polvo cósmico de grafito, aunque el tamaño de las partículas en el hollín supera en diez veces, o incluso más, las dimensiones de las partículas cósmicas de grafito de tamaño regular.

[2] La luz de esta supernova llegó a la Tierra en el año 1987, como lo indica su nombre.

Enlaces

Nota de prensa publicada en el portal del Observatorio Europeo Austral (ESO).

El detector antártico IceCube confirma la llegada de neutrinos cósmicos

El equipo de IceCube, un detector de partículas enterrado en el hielo de la Antártida, anuncia esta semana en Science el registro de 28 partículas de muy alta energía. La observación constituye la primera evidencia de neutrinos procedentes de lejanos aceleradores cósmicos, más allá de los confines de nuestro sistema solar. La era de la astronomía de neutrinos acaba de comenzar.

Observatorio antártico de neutrinos Icecube. / Felipe Pedreros-IceCube-NSF

Tras casi 25 años de la idea de detectar neutrinos bajo el hielo, el observatorio IceCube de la Antártida por fin lo ha conseguido. Según publican los miembros del equipo en la revista Science, se han registrado 28 eventos de partículas muy energéticas que se corresponden con neutrinos de aceleradores cósmicos.

“Esta es la primera muestra de neutrinos de muy alta energía que provienen de fuera de nuestro sistema solar, con energías de más de un millón de veces superiores a las observadas en 1987 en el marco de una supernova –SN 1987A– vista en la Gran Nube de Magallanes”, señala Francis Halzen, investigador principal del proyecto y profesor en la Universidad de Wisconsin-Madison (EE UU), donde ya se adelantaron los resultados hace un par de meses.

“Este es el amanecer de una nueva era de la astronomía”, destaca el investigador, satisfecho de haber encontrado algo que los científicos llevaban buscando desde hacía mucho tiempo, sobre todo para desentrañar el misterioso origen de los rayos cósmicos.

Sus partículas de alta energía están cargadas eléctricamente, por lo que se desvían por los campos magnéticos y son muy difíciles de rastrear. Los científicos necesitaban un mensajero que no tuviera obstruido su viaje por el universo, una partícula que llegara hasta la Tierra desde distancias muy lejanas. Ahora parece que lo tienen.

Los neutrinos cósmicos son estos mensajeros, aunque no se había detectado ninguno fuera del sistema solar –de otras fuentes distintas al Sol– desde 1987. Años después, a partir de 2010, las observaciones de IceCube tuvieron sus frutos y en 2012 llegaron las buenas noticias desde el polo Sur, cuando se informó del descubrimiento de dos neutrinos de altas energías a los que bautizaron como Epi y Blas (Bert y Ernie, en inglés).

Epi, Blas y el científico español

“Blas se había detectado en agosto de 2011, y Epi –el más potente de todos– se detectó mientras mi compañero Sven y yo cuidábamos del detector en enero de 2012”, recuerda el investigador español Carlos Pobes, actualmente en el Instituto de Ciencia de Materiales de Aragón (Universidad de Zaragoza-CSIC) pero por entonces en el observatorio antártico.

“Estos dos neutrinos eran con una probabilidad bastante elevada de origen astrofísico, algo que no se había observado nunca y que era uno de los objetivos principales de IceCube”, añade el científico.

El equipo comenzó a revisar concienzudamente el resto de los registros, buscando más eventos de neutrinos de alta energía. Así se descubrieron 26 más, incluyendo los más energéticos jamás observados. Todos presentan las características previstas para los neutrinos de origen extraterrestre.

Los científicos sospechan que su procedencia está en fuentes luminosas que producen rayos cósmicos de alta energía. Confirmar esto es su siguiente línea de investigación, para resolver de una vez el enigma del origen de los rayos cósmicos.

Referencia bibliográfica:

M.G. Aartsen et al. “Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector”. Science, 21 de noviembre de 2013.

Artículo publicado en Servicio de Información y Noticias Científicas (SINC).